nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 09, 13-24
基于机器学习的铜电解精炼电积过程电压及出液铜离子浓度预测模型研究
基金项目(Foundation): 国家重点研发计划项目(2023YFC3904004)
邮箱(Email):
DOI: 10.20237/j.issn.1007-7545.2025.09.002
摘要:

电积是目前最为常用的铜电解液净化工艺,其出口铜离子浓度波动大、人工调控难度高,易造成后续硫化单元处理负荷剧增及铜砷共沉淀产废量增大,而传统预测模型存在不可解释、稳态限制、低泛化能力等缺陷。为此,构建了企业电积生产过程电压及出液铜离子浓度准确预测的多参数模型。通过对比研究10种机器学习模型,发现GBR在电压预测中表现最优(决定系数R2=0.79,均方误差MSE=1.25),XGBoost对出液铜离子浓度的预测准确度最高(R2=0.87,MSE=5.58)。SHAP解释性分析表明,电流和时间分别是影响电压和出液铜离子浓度变化的主控因素。模型决策机制与电化学原理及质量守恒定律一致,突破了传统模型对非线性关系的表征局限,为异常工况的预警诊断、关键参数动态优化控制及减少污染物产生提供依据。

Abstract:

In recent years, the growing demand for copper concentrate raw materials and the tight supply in the raw material procurement market have led to increasing complexity in the raw material structure. Higher impurity contents in anode plates result in greater dissolution amounts in the electrolyte. Therefore, according to the composition of the electrolyte, a certain amount of electrolyte must be extracted from the electrolyte circulation system daily for purification to maintain the concentration stability and volume balance of copper and other components in the electrolyte. Electrowinning is currently the most commonly used purification method. However, the copper electrolytic refining and electrowinning process currently faces issues such as significant fluctuations in effluent copper concentration, increased processing loads on subsequent sulfidation units due to difficult manual regulation, and substantial generation of copper-arsenic coprecipitation waste. Meanwhile, traditional prediction models for copper electrowinning suffer from defects such as lack of interpretability, steady-state limitations, and low generalization ability. To address the above problems, this study collects data from the enterprise's secondstage electrowinning production process. After pretreatment(cleaning, filling, and normalization), time, copper concentration in the electrowinning inlet solution, electrolyte temperature, current intensity, and flow rate were used as input variables to establish models for predicting electrowinning voltage and copper concentration in the electrowinning effluent solution. Ten machine learning models were constructed based on default hyperparameters, and their performances were systematically evaluated through multi-dimensional indicators including the coefficient of determination(R2), mean squared error(MSE), and weighted mean absolute percentage error(wMAPE). Through time-series characteristic analysis of key parameters, it is found that each parameter exhibits significantly different time-series fluctuation characteristics, and correlation analysis is used to validate the rationality of the model feature screening results. Subsequently, the Gradient Boosting Regression(GBR) model(R2=0.72, MSE=1.51, wMAPE=2.78%) and eXtreme Gradient Boosting(XGBoost) model(R2=0.73, MSE=8.91), which performs excellently in the initial screening, are further optimized using Bayesian optimization and grid search. After hyperparameter optimization, GBR is found to be suitable for voltage prediction with its stable linear fitting advantages(R2=0.79, MSE=1.25), while XGBoost demonstrates excellent performance in concentration prediction by strengthening nonlinear feature capture(R2=0.87, MSE=5.58). Shapley Additive exPlanations(SHAP) interpretability analysis shows that current intensity is the main factor affecting voltage, with a strong positive correlation between it and voltage. Time is identified as the key factor influencing effluent copper concentration, where high-value time exhibits statistically significant positive contributions to the model's predicted effluent copper concentration. The SHAP values of inlet copper concentration, temperature, and flow rate are distributed close to zero with positive and negative fluctuations, indicating their low impact and dependence on feature interactions. The decision-making mechanism of the models is consistent with electrochemical principles and the law of mass conservation. The established models outperform traditional mechanistic and soft-sensing models in capturing the nonlinear relationships and complex couplings in the electrowinning process, providing a basis for the early warning and diagnosis of abnormal working conditions, the optimized control of dynamic working conditions and the reduction of pollutants generation.

参考文献

[1] CHODANKAR N R, JI S H, HAN Y K, et al. Dendritic nanostructured waste copper wires for high-energy alkaline battery[J]. Nano-Micro Letters, 2019, 12(1):1. DOI:10.1007/s40820-019-0337-2.

[2]崔涛.高砷脱铜电解液的净化与回用研究[D].长沙:中南大学, 2012.CUI T. Research on purification and recycling of copper electrolyte with high-concentration arsenic[D]. Changsha:Central South University, 2012.

[3]毛建伟.砷在铜电解液净化中的作用机理及价态转化[D].洛阳:河南科技大学, 2013.MAO J W. The role of arsenic in copper electrolyte purification mechanism and conversion of arsenic valence state[D].Luoyang:Henan University of Science and Technology, 2013.

[4] AYDOGDU K, DUZGUN S, YAYLACI E D, et al. A systems engineering approach to decarbonizing mining:analyzing electrification and CO2 emission reduction scenarios for copper mining haulage systems[J]. Sustainability, 2024, 16(14):6232.DOI:10.3390/su16146232.

[5] FLORES G A, RISOPATRON C, PEASE J. Processing of complex materials in the copper industry:challenges and opportunities ahead[J]. Journal of Metals, 2020, 72(10):3447-3461.

[6] STEFANOV E, GEORGIEVA S. Speciation analysis of arsenic in copper electrolyte baths using liquid-liquid extraction and ICP-OES method detection[J]. Archives of Metallurgy and Materials, 2022, 67(2):607-613.

[7]张晓瑜.铜电解精炼过程中砷锑铋杂质分布及其脱除研究[D].西安:西安建筑科技大学, 2014.ZHANG X Y. Impurity distribution and control study in copper electrolytic refining process[D]. Xi'an:Xi'an University of Architecture and Technology, 2014.

[8]何恩,王雨,朱鹏春,等.杂质砷、锑、铋对铜电解精炼的影响及净化脱除技术进展[J].有色金属(冶炼部分), 2025(6):83-93.HE E, WANG Y, ZHU P C, et al. Influence of impurities arsenic, antimony and bismuth on copper electrolytic refining and advances in purification and removal technologies[J].Nonferrous Metals(Extractive Metallurgy), 2025(6):83-93.

[9]方玉倩.铜电解液脱砷精炼循环工艺研究及其安全评价[D].天津:天津理工大学, 2021.FANG Y Q. Study on refining cycle process of copper electrolyte for arsenic removal and its safety evaluation[D].Tianjin:Tianjin University of Technology, 2021.

[10]陈玉虎,俞挺,马丹辉,等.铜电解液电积净液工艺现状[J].广州化工, 2020, 48(7):14-16.CHEN Y H, YU T, MA D H, et al. Research progress on purification of arsenic by electrolytic method[J]. Guangzhou Chemical Industry, 2020, 48(7):14-16.

[11]柴兴亮,陈雅婷,江文炳,等.高杂脱铜电积生产的优化改进[J].矿冶, 2021, 30(2):88-94.CHAI X L, CHEN Y T, JIANG B W, et al. Optimization and improvement of high impurity copper removal electrodeposition production[J]. Mining and Metallurgy, 2021, 30(2):88-94.

[12]任兵芝,夏文堂,王宏丹,等.基于响应面法的铜电解精炼槽电压预测模型[J].有色金属工程, 2019, 9(2):60-65.REN B Z, XIA W T, WANG H D, et al. Prediction model for cell voltage of copper electrorefining using response surface methodology[J]. Nonferrous Metals Engineering, 2019, 9(2):60-65.

[13] GROBBELAAR S, DORFLING C, TADIE M. Development of a dynamic semi-empirical model for simulation of copper electrowinning processes[J]. Journal of Minerals, Metals&Materials Society, 2024, 76(3):1702-1714.

[14] WU J, CHENG Y M, LIU C, et al. A BP neural network based on GA for optimizing energy consumption of copper electrowinning[J]. Mathematical Problems in Engineering,2020, 2020(16):1-10. DOI:10.1155/2020/1026128.

[15]周杰,顾伟伟,张建,等.基于随机森林和改进竞争群算法的铜电解过程能耗优化[J].中国有色冶金, 2023, 52(1):60-67.ZHOU J, GU W W, ZHANG J, et al. Energy consumption optimization of copper electrolysis process based on Random Forest and improved competitive group algorithm[J]. China Nonferrous Metallurgy, 2023, 52(1):60-67.

[16]袁平,李妍,毛志忠.基于支持向量机插值的铜电解液成分检测[J].东北大学学报(自然科学版), 2008, 29(2):174-177.YUAN P, LI Y, MAO Z Z. Detection based on support vector machine interpolation for copper electrolytic composition[J].Journal of Northeastern University(Natural Science), 2008,29(2):174-177.

[17]李明杰.多目标优化及其决策方法在铜电解系统中的应用研究[D].沈阳:东北大学, 2008.LI M J. Research on multi-objective optimization decision method and its applications to copper electrolysis process[D].Shenyang:Northeastern University, 2008.

[18] HELAL S, SARIEDDEEN H, DAHROUJ H, et al. Signal processing and machine learning techniques for terahertz sensing:an overview[J]. IEEE Signal Processing Magazine,2022, 39(5):42-62.

[19] CAO Y, MIAO Q G, LIU J C, et al. Advance and prospects of AdaBoost algorithm[J]. Acta Automatica Sinica, 2013, 39(6):745-758.

[20] BREIMAN L. Bagging predictors[J]. Machine Learning, 1996,24(2):123-140.

[21] JAFFARI Z H, JEONG H, SHIN J, et al. Machine-learningbased prediction and optimization of emerging contaminants'adsorption capacity on biochar materials[J]. Chemical Engineering Journal, 2023, 466:143073. DOI:10.1016/j.cej.2023.143073.

[22] GEURTS P, ERNST D, WEHENKEL L. Extremely randomized trees[J]. Machine Learning, 2006, 63(1):3-42.

[23] ABU ALFEILAT H A, HASSANAT A B A, LASASSMEH O,et al. Effects of distance measure choice on k-nearest neighbor classifier performance:a review[J]. Journal of Big Data, 2019,7(4):221-248.

[24] KE G L, MENG Q, FINLEY T, et al. Light GBM:a highly efficient gradient boosting decision tree[C]//Proceedings of the 31st Annual Conference on Neural Information Processing Systems, NIPS'17. La Jolla, CA, Dec 04-09, 2017.

[25] PROBST P, WRIGHT M N, BOULESTEIX A L.Hyperparameters and tuning strategies for random forest[J].WIREs Data Mining and Knowledge Discovery, 2019, 9(3):15.DOI:10.1002/widm.1301.

[26] RAGHAVENDRA N S, DEKA P C. Support vector machine applications in the field of hydrology:a review[J]. Applied Soft Computing, 2014, 19:372-86.

[27] NIAZKAR M, MENAPACE A, BRENTAN B, et al.Applications of XGBoost in water resources engineering:a systematic literature review(Dec 2018—May 2023)[J].Environmental Modelling&Software, 2024, 174:105971.DOI:10.1016/j.envsoft.2024.105971.

[28] AYOUB J, YANG X J, ZHOU F. Combat COVID-19infodemic using explainable natural language processing models[J]. Information Processing&Management, 2021,58(4):102569. DOI:10.1016/j.ipm.2021.102569.

[29] SHARMA P, MIRZAN S R, BHANDARI A, et al. Evaluating tree explanation methods for anomaly reasoning:a case study of SHAP TreeExplainer and TreeInterpreter[C]//GROSSMANN G, RAM S. Proceedings of the 39th International Conference on Conceptual Modeling(ER),Vienna, Austria, Nov 03-06, 2020. Springer, Cham. DOI:10.1007/978-3-030-65847-2_4.

[30]佘智敏,梁文林.精操细作降低铜电解电耗[J].冶金丛刊,2001(5):31-32, 14.SHE Z M, LIANG W L. Discussion on reducing power consumption during copper electrolytic process[J]. Engineering and Technological Research, 2001(5):31-32, 14.

基本信息:

DOI:10.20237/j.issn.1007-7545.2025.09.002

中图分类号:TF811;TP181

引用信息:

[1]闫哲祯,卢金成,程寒,等.基于机器学习的铜电解精炼电积过程电压及出液铜离子浓度预测模型研究[J].有色金属(冶炼部分),2025(09):13-24.DOI:10.20237/j.issn.1007-7545.2025.09.002.

基金信息:

国家重点研发计划项目(2023YFC3904004)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文